Quantum Gate Fidelity in Terms of Choi Matrices

Nathaniel Johnston Joint work with David W. Kribs

University of Guelph

March 8, 2011

- Pure quantum states are represented by unit vectors $|\phi\rangle\in\mathbb{C}^n$.
- Ideally, quantum gates are represented by unitary transformations on \mathbb{C}^n .
- In practice, however, things aren't always unitary noise gets introduced into the system.
- In practice, quantum channels are represented by completely positive, trace-preserving maps.

- ullet Pure quantum states are represented by unit vectors $|\phi
 angle\in\mathbb{C}^n.$
- Ideally, quantum gates are represented by unitary transformations on \mathbb{C}^n .
- In practice, however, things aren't always unitary noise gets introduced into the system.
- In practice, quantum channels are represented by completely positive, trace-preserving maps.

- ullet Pure quantum states are represented by unit vectors $|\phi
 angle\in\mathbb{C}^n$.
- Ideally, quantum gates are represented by unitary transformations on \mathbb{C}^n .
- In practice, however, things aren't always unitary noise gets introduced into the system.
- In practice, quantum channels are represented by completely positive, trace-preserving maps.

- ullet Pure quantum states are represented by unit vectors $|\phi
 angle\in\mathbb{C}^n.$
- Ideally, quantum gates are represented by unitary transformations on \mathbb{C}^n .
- In practice, however, things aren't always unitary noise gets introduced into the system.
- In practice, quantum channels are represented by completely positive, trace-preserving maps.

- A unitary channel is a map on M_n of the form $\mathcal{U}(X) \equiv UXU^*$, where $U \in M_n$ is unitary.
- A quantum channel Q is a completely positive, trace-preserving map on M_n . That is,
 - ① $Q(X) \in M_n^+ \quad \forall X \in M_n^+$ (i.e., Q is positive);
 - ② $id_m \otimes \mathcal{Q}$ is positive for all $m \geq 1$; and

- A unitary channel is a map on M_n of the form $\mathcal{U}(X) \equiv UXU^*$, where $U \in M_n$ is unitary.
- A quantum channel Q is a completely positive, trace-preserving map on M_n . That is,
 - ① $\mathcal{Q}(X) \in M_n^+ \quad \forall X \in M_n^+$ (i.e., \mathcal{Q} is positive);
 - ② $id_m \otimes \mathcal{Q}$ is positive for all $m \geq 1$; and

- A unitary channel is a map on M_n of the form $\mathcal{U}(X) \equiv UXU^*$, where $U \in M_n$ is unitary.
- A quantum channel Q is a completely positive, trace-preserving map on M_n . That is,

 - ② $id_m \otimes \mathcal{Q}$ is positive for all $m \geq 1$; and

- A unitary channel is a map on M_n of the form $\mathcal{U}(X) \equiv UXU^*$, where $U \in M_n$ is unitary.
- A quantum channel Q is a completely positive, trace-preserving map on M_n . That is,
 - **1** $Q(X) \in M_n^+ \quad \forall X \in M_n^+$ (i.e., Q is **positive**);
 - ② $id_m \otimes \mathcal{Q}$ is positive for all $m \geq 1$; and

- A unitary channel is a map on M_n of the form $U(X) \equiv UXU^*$, where $U \in M_n$ is unitary.
- A quantum channel Q is a completely positive, trace-preserving map on M_n . That is,
 - **1** $Q(X) \in M_n^+ \quad \forall X \in M_n^+$ (i.e., Q is **positive**);
 - ② $id_m \otimes \mathcal{Q}$ is positive for all $m \geq 1$; and

- To determine whether or not a map Λ is completely positive, it is enough to determine whether or not its Choi matrix is positive semidefinite.
- The Choi matrix of a map Λ on M_n is the following operator on $\mathbb{C}^n \otimes \mathbb{C}^n$:

$$C_{\Lambda} := \sum_{i,j=1}^{n} |i\rangle\langle j| \otimes \Lambda(|i\rangle\langle j|).$$

- To determine whether or not a map Λ is completely positive, it is enough to determine whether or not its Choi matrix is positive semidefinite.
- The Choi matrix of a map Λ on M_n is the following operator on $\mathbb{C}^n \otimes \mathbb{C}^n$:

$$C_{\Lambda} := \sum_{i,j=1}^{n} |i\rangle\langle j| \otimes \Lambda(|i\rangle\langle j|).$$

What is Quantum Gate Fidelity?

Quantum gate fidelity is a way of measuring the distance between the unitary channel \mathcal{U} we wanted to implement and the quantum channel \mathcal{Q} that we did implement.

• It is a function on pure states (unit vectors in \mathbb{C}^n) defined by:

$$\mathcal{F}_{\mathcal{Q},\mathcal{U}}(|\phi\rangle) := \operatorname{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)\mathcal{U}(|\phi\rangle\langle\phi|))$$
$$= \operatorname{Tr}(\mathcal{U}^{\dagger} \circ \mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|)$$

• WLOG, we can ignore \mathcal{U} . We define $\mathcal{F}_{\mathcal{Q}} := \mathcal{F}_{\mathcal{Q},id}$.

What is Quantum Gate Fidelity?

Quantum gate fidelity is a way of measuring the distance between the unitary channel $\mathcal U$ we wanted to implement and the quantum channel $\mathcal Q$ that we did implement.

• It is a function on pure states (unit vectors in \mathbb{C}^n) defined by:

$$\mathcal{F}_{\mathcal{Q},\mathcal{U}}(|\phi\rangle) := \operatorname{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)\mathcal{U}(|\phi\rangle\langle\phi|))$$
$$= \operatorname{Tr}(\mathcal{U}^{\dagger} \circ \mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|)$$

• WLOG, we can ignore \mathcal{U} . We define $\mathcal{F}_{\mathcal{Q}} := \mathcal{F}_{\mathcal{Q},id}$.

What is Quantum Gate Fidelity?

Quantum gate fidelity is a way of measuring the distance between the unitary channel \mathcal{U} we wanted to implement and the quantum channel \mathcal{Q} that we did implement.

• It is a function on pure states (unit vectors in \mathbb{C}^n) defined by:

$$\mathcal{F}_{\mathcal{Q},\mathcal{U}}(|\phi\rangle) := \operatorname{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)\mathcal{U}(|\phi\rangle\langle\phi|))$$
$$= \operatorname{Tr}(\mathcal{U}^{\dagger} \circ \mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|)$$

ullet WLOG, we can ignore \mathcal{U} . We define $\mathcal{F}_{\mathcal{Q}}:=\mathcal{F}_{\mathcal{Q},\mathrm{id}}$.

Recall that

$$\mathcal{F}_{\mathcal{Q}}(|\phi\rangle) = \text{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|).$$

• It is clear that $\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}^\dagger}$, where \mathcal{Q}^\dagger is the dual map defined by

$$\operatorname{Tr}(\mathcal{Q}(X)Y) = \operatorname{Tr}(X\mathcal{Q}^{\dagger}(Y)) \quad \forall X, Y \in M_n$$

• A bit more generally, if \mathcal{E} is a unital channel (i.e., $\mathcal{E}(I) = I$) and $r \geq 0$ then $\mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$ has the same gate fidelity as \mathcal{Q} itself.

Recall that

$$\mathcal{F}_{\mathcal{Q}}(|\phi\rangle) = \text{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|).$$

• It is clear that $\mathcal{F}_{\mathcal{Q}}\equiv\mathcal{F}_{\mathcal{Q}^\dagger}$, where \mathcal{Q}^\dagger is the dual map defined by

$$\operatorname{Tr}(\mathcal{Q}(X)Y) = \operatorname{Tr}(X\mathcal{Q}^{\dagger}(Y)) \quad \forall X, Y \in M_n.$$

• A bit more generally, if \mathcal{E} is a unital channel (i.e., $\mathcal{E}(I) = I$) and $r \geq 0$ then $\mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$ has the same gate fidelity as \mathcal{Q} itself.

Recall that

$$\mathcal{F}_{\mathcal{Q}}(|\phi\rangle) = \text{Tr}(\mathcal{Q}(|\phi\rangle\langle\phi|)|\phi\rangle\langle\phi|).$$

• It is clear that $\mathcal{F}_{\mathcal{Q}}\equiv\mathcal{F}_{\mathcal{Q}^\dagger}$, where \mathcal{Q}^\dagger is the dual map defined by

$$\operatorname{Tr}(\mathcal{Q}(X)Y) = \operatorname{Tr}(X\mathcal{Q}^{\dagger}(Y)) \quad \forall X, Y \in M_n.$$

• A bit more generally, if $\mathcal E$ is a unital channel (i.e., $\mathcal E(I)=I$) and $r\geq 0$ then $\mathcal Q+r(\mathcal E-\mathcal E^\dagger)$ has the same gate fidelity as $\mathcal Q$ itself.

What about the converse?

If $\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{R}}$, does there exist $r \geq 0$ and a unital channel \mathcal{E} such that $\mathcal{R} = \mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$?

What about the converse?

If
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{R}}$$
, does there exist $r \geq 0$ and a unital channel \mathcal{E} such that $\mathcal{R} = \mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$?

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- Δ is trace-preserving; and
- ③ There does not exist $r \ge 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$
.

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- Λ is trace-preserving; and
- ③ There does not exist $r \ge 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- Λ is trace-preserving; and
- ③ There does not exist $r \ge 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- Λ is trace-preserving; and
- ① There does not exist $r \geq 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$
.

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- \bullet $\mathcal{F}_{\Lambda} \equiv 0$;
- Λ is trace-preserving; and
- **③** There does not exist $r \ge 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$

It was shown in [Magesan, 2010] that the converse does not hold when $n \ge 4$.

- \bullet $\mathcal{F}_{\Lambda} \equiv 0$;
- Λ is trace-preserving; and
- **③** There does not exist $r \ge 0$ and a unital channel \mathcal{E} with $\Lambda = r(\mathcal{E} \mathcal{E}^{\dagger})$.

Then
$$\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{Q}+\varepsilon\Lambda}$$
.

In 2 or 3 Dimensions

In contrast with the case when the dimension is 4 or higher, we have the following result in 2 or 3 dimensions:

$\mathsf{T}\mathsf{heorem}$

Let Q and R be quantum channels on M_n . Suppose that either

•
$$n = 2$$
; or

•
$$n = 3$$
 and $Q(1) = R(1)$.

Then $\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{R}}$ if and only if there exists $r \geq 0$ and a unital quantum channel \mathcal{E} such that $\mathcal{R} = \mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$.

In 2 or 3 Dimensions

In contrast with the case when the dimension is 4 or higher, we have the following result in 2 or 3 dimensions:

Theorem

Let $\mathcal Q$ and $\mathcal R$ be quantum channels on M_n . Suppose that either

- n = 2; or
- n = 3 and Q(I) = R(I).

Then $\mathcal{F}_{\mathcal{Q}} \equiv \mathcal{F}_{\mathcal{R}}$ if and only if there exists $r \geq 0$ and a unital quantum channel \mathcal{E} such that $\mathcal{R} = \mathcal{Q} + r(\mathcal{E} - \mathcal{E}^{\dagger})$.

- The symmetric subspace $S \subset \mathbb{C}^n \otimes \mathbb{C}^n$ is the subspace spanned by states of the form $|i\rangle \otimes |j\rangle + |j\rangle \otimes |i\rangle$.
- ullet We denote the projection onto the symmetric subspace by $P_{\mathcal{S}}$.
- We denote the partial transpose of $X \in M_n \otimes M_n$ by X^{Γ} .

- The symmetric subspace $S \subset \mathbb{C}^n \otimes \mathbb{C}^n$ is the subspace spanned by states of the form $|i\rangle \otimes |j\rangle + |j\rangle \otimes |i\rangle$.
- ullet We denote the projection onto the symmetric subspace by $P_{\mathcal{S}}$.
- We denote the **partial transpose** of $X \in M_n \otimes M_n$ by X^{Γ} .

- The symmetric subspace $S \subset \mathbb{C}^n \otimes \mathbb{C}^n$ is the subspace spanned by states of the form $|i\rangle \otimes |j\rangle + |j\rangle \otimes |i\rangle$.
- ullet We denote the projection onto the symmetric subspace by $P_{\mathcal{S}}$.
- We denote the **partial transpose** of $X \in M_n \otimes M_n$ by X^{Γ} .

- The symmetric subspace $S \subset \mathbb{C}^n \otimes \mathbb{C}^n$ is the subspace spanned by states of the form $|i\rangle \otimes |j\rangle + |j\rangle \otimes |i\rangle$.
- We denote the projection onto the symmetric subspace by $P_{\mathcal{S}}$.
- We denote the partial transpose of $X \in M_n \otimes M_n$ by X^{Γ} .

Our main result shows that the gate fidelity of a channel Q is determined exactly by the operator $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$:

$\mathsf{Theorem}$

Let ${\mathcal Q}$ and ${\mathcal R}$ be quantum channels. Then ${\mathcal F}_{\mathcal Q}\equiv {\mathcal F}_{\mathcal R}$ if and only if

$$P_{\mathcal{S}}C_{\mathcal{Q}}^{\mathsf{\Gamma}}P_{\mathcal{S}} = P_{\mathcal{S}}C_{\mathcal{R}}^{\mathsf{\Gamma}}P_{\mathcal{S}}.$$

Our main result shows that the gate fidelity of a channel Q is determined exactly by the operator $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$:

Theorem

Let Q and R be quantum channels. Then $\mathcal{F}_Q \equiv \mathcal{F}_R$ if and only if

$$P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}=P_{\mathcal{S}}C_{\mathcal{R}}^{\Gamma}P_{\mathcal{S}}.$$

As a special case of the characterization of gate fidelity, consider the case of quantum channels with constant gate fidelity.

- It is well-known that depolarizing channels (i.e., channels of the form $\mathcal{Q}(X) \equiv pX + \frac{(1-p)\mathrm{Tr}(X)}{n}I$) have constant gate fidelity.
- There are others that have constant gate fidelity when $n \ge 4$ as well...

Corollary

Let Q be a quantum channel and let $c \in \mathbb{R}$. Then $\mathcal{F}_Q \equiv c$ if and only if $P_S C_O^{\Gamma} P_S = c P_S$.

As a special case of the characterization of gate fidelity, consider the case of quantum channels with constant gate fidelity.

- It is well-known that depolarizing channels (i.e., channels of the form $Q(X) \equiv pX + \frac{(1-p)\operatorname{Tr}(X)}{n}I$) have constant gate fidelity.
- There are others that have constant gate fidelity when $n \ge 4$ as well...

Corollary

Let Q be a quantum channel and let $c \in \mathbb{R}$. Then $\mathcal{F}_Q \equiv c$ if and only if $P_{\mathcal{S}}C_{\mathcal{O}}^{\Gamma}P_{\mathcal{S}} = cP_{\mathcal{S}}$.

General Characterization

As a special case of the characterization of gate fidelity, consider the case of quantum channels with constant gate fidelity.

- It is well-known that depolarizing channels (i.e., channels of the form $Q(X) \equiv pX + \frac{(1-p)\operatorname{Tr}(X)}{n}I$) have constant gate fidelity.
- There are others that have constant gate fidelity when $n \ge 4$ as well...

Corollary

Let Q be a quantum channel and let $c \in \mathbb{R}$. Then $\mathcal{F}_Q \equiv c$ if and only if $P_{\mathcal{S}}C_{\mathcal{O}}^{\Gamma}P_{\mathcal{S}} = cP_{\mathcal{S}}$.

General Characterization

As a special case of the characterization of gate fidelity, consider the case of quantum channels with constant gate fidelity.

- It is well-known that depolarizing channels (i.e., channels of the form $Q(X) \equiv pX + \frac{(1-p)\operatorname{Tr}(X)}{n}I$) have constant gate fidelity.
- There are others that have constant gate fidelity when $n \ge 4$ as well...

Corollary

Let Q be a quantum channel and let $c \in \mathbb{R}$. Then $\mathcal{F}_Q \equiv c$ if and only if $P_{\mathcal{S}}C_{\mathcal{O}}^{\mathsf{T}}P_{\mathcal{S}} = cP_{\mathcal{S}}$.

- One way of obtaining a single number from the gate fidelity is to average its value over all pure states.
- Alternatively, one may minimize the gate fidelity function over all pure states.
- Because all of the information about the gate fidelity of Q is contained in $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, it is instructive to see how the average and minimum gate fidelity depend on this operator.

- One way of obtaining a single number from the gate fidelity is to average its value over all pure states.
- Alternatively, one may minimize the gate fidelity function over all pure states.
- Because all of the information about the gate fidelity of Q is contained in $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, it is instructive to see how the average and minimum gate fidelity depend on this operator.

- One way of obtaining a single number from the gate fidelity is to average its value over all pure states.
- Alternatively, one may minimize the gate fidelity function over all pure states.
- Because all of the information about the gate fidelity of Q is contained in $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, it is instructive to see how the average and minimum gate fidelity depend on this operator.

- One way of obtaining a single number from the gate fidelity is to average its value over all pure states.
- Alternatively, one may minimize the gate fidelity function over all pure states.
- Because all of the information about the gate fidelity of \mathcal{Q} is contained in $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, it is instructive to see how the average and minimum gate fidelity depend on this operator.

Average Gate Fidelity

The average gate fidelity $\overline{\mathcal{F}_{\mathcal{Q}}}$ of a quantum channel \mathcal{Q} is the average of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The average gate fidelity is known to be simple to calculate in terms of the Kraus operators of Q. The following proposition is a simple rephrasing of a well-known formula.

Proposition

Let Q be a quantum channel on M_n . Then

$$\overline{\mathcal{F}_{\mathcal{Q}}} = \frac{n + \operatorname{Tr}(P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}})}{n(n+1)}.$$

Average Gate Fidelity

The average gate fidelity $\overline{\mathcal{F}_{\mathcal{Q}}}$ of a quantum channel \mathcal{Q} is the average of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The average gate fidelity is known to be simple to calculate in terms of the Kraus operators of Q. The following proposition is a simple rephrasing of a well-known formula.

Proposition

Let Q be a quantum channel on M_n . Then

$$\overline{\mathcal{F}_{\mathcal{Q}}} = \frac{n + \operatorname{Tr}(P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}})}{n(n+1)}.$$

Average Gate Fidelity

The average gate fidelity $\overline{\mathcal{F}_{\mathcal{Q}}}$ of a quantum channel \mathcal{Q} is the average of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The average gate fidelity is known to be simple to calculate in terms of the Kraus operators of Q. The following proposition is a simple rephrasing of a well-known formula.

Proposition **Proposition**

Let Q be a quantum channel on M_n . Then

$$\overline{\mathcal{F}_{\mathcal{Q}}} = \frac{n + \operatorname{Tr}(P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}})}{n(n+1)}.$$

The **minimum gate fidelity** $\mathcal{F}_{\mathcal{Q}}^{min}$ of a quantum channel \mathcal{Q} is the minimum of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The minimum gate fidelity is expected to be tough to calculate. In order to present it in terms of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, we first define a norm on $M_n\otimes M_n$:

Let $X \in M_n \otimes M_n$. Then we define

$$\|X\|_{S(1)} := \sup_{|v\rangle,|w\rangle} \Big\{ \big| \langle v|X|w\rangle \big| : |v\rangle, |w\rangle \text{ are separable} \Big\}.$$

The **minimum gate fidelity** $\mathcal{F}_{\mathcal{Q}}^{min}$ of a quantum channel \mathcal{Q} is the minimum of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The minimum gate fidelity is expected to be tough to calculate. In order to present it in terms of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, we first define a norm on $M_n\otimes M_n$:

Let $X \in M_n \otimes M_n$. Then we define

$$\|X\|_{S(1)} := \sup_{|v\rangle,|w\rangle} \Big\{ \big|\langle v|X|w\rangle \big| : |v\rangle, |w\rangle \text{ are separable} \Big\}.$$

The **minimum gate fidelity** $\mathcal{F}_{\mathcal{Q}}^{min}$ of a quantum channel \mathcal{Q} is the minimum of $\mathcal{F}_{\mathcal{Q}}(|\phi\rangle)$ over all pure states $|\phi\rangle$.

The minimum gate fidelity is expected to be tough to calculate. In order to present it in terms of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$, we first define a norm on $M_n\otimes M_n$:

Let $X \in M_n \otimes M_n$. Then we define

$$||X||_{S(1)} := \sup_{|v\rangle,|w\rangle} \Big\{ |\langle v|X|w\rangle| : |v\rangle, |w\rangle \text{ are separable} \Big\}.$$

Theorem

Let Q be a quantum channel and let λ be the maximal eigenvalue of $P_{\mathcal{S}}C_{\mathcal{O}}^{\Gamma}P_{\mathcal{S}}$. Then

$$\mathcal{F}_{\mathcal{Q}}^{min} = \lambda - \left\| \lambda P_{\mathcal{S}} - P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}} \right\|_{\mathcal{S}(1)}.$$

- It is NP-HARD to compute $\|\cdot\|_{\mathcal{S}(1)}$ on general positive operators. This doesn't imply that $\mathcal{F}_{\mathcal{Q}}^{min}$ is NP-HARD, but it certainly seems suggestive.
- Nevertheless, much is known about $\|\cdot\|_{S(1)}$ that we can now immediately apply to minimum gate fidelity.

Theorem

Let Q be a quantum channel and let λ be the maximal eigenvalue of $P_S C_O^{\Gamma} P_S$. Then

$$\mathcal{F}_{\mathcal{Q}}^{min} = \lambda - \left\| \lambda P_{\mathcal{S}} - P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}} \right\|_{\mathcal{S}(1)}.$$

- It is NP-HARD to compute $\|\cdot\|_{S(1)}$ on general positive operators. This doesn't imply that $\mathcal{F}_{\mathcal{Q}}^{min}$ is NP-HARD, but it certainly seems suggestive.
- Nevertheless, much is known about $\|\cdot\|_{S(1)}$ that we can now immediately apply to minimum gate fidelity.

Theorem

Let Q be a quantum channel and let λ be the maximal eigenvalue of $P_S C_O^{\Gamma} P_S$. Then

$$\mathcal{F}_{\mathcal{Q}}^{min} = \lambda - \left\| \lambda P_{\mathcal{S}} - P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}} \right\|_{S(1)}.$$

- It is NP-HARD to compute $\|\cdot\|_{S(1)}$ on general positive operators. This doesn't imply that $\mathcal{F}_{\mathcal{Q}}^{min}$ is NP-HARD, but it certainly seems suggestive.
- Nevertheless, much is known about $\|\cdot\|_{S(1)}$ that we can now immediately apply to minimum gate fidelity.

For example, we immediately get the following bounds:

Corollary

Let \mathcal{Q} be a quantum channel on M_n . Denote the eigenvalues of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$ supported on $P_{\mathcal{S}}$ by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n(n+1)/2}$ (i.e., these are the n(n+1)/2 potentially nonzero eigenvalues of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$). Let α_j be the maximal Schmidt coefficient of the eigenvector corresponding to λ_j . Then

$$\begin{split} & \mathcal{F}^{\min}_{\mathcal{E}} \leq \lambda_1 - \max_{j} \{ (\lambda_1 - \lambda_j) \alpha_j^2 \} \quad \text{and} \\ & \mathcal{F}^{\min}_{\mathcal{E}} \geq \max \big\{ \lambda_{n(n+1)/2}, \lambda_1 - \sum_{j} (\lambda_1 - \lambda_j) \alpha_j^2 \big\}. \end{split}$$

For example, we immediately get the following bounds:

Corollary

Let \mathcal{Q} be a quantum channel on M_n . Denote the eigenvalues of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$ supported on $P_{\mathcal{S}}$ by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n(n+1)/2}$ (i.e., these are the n(n+1)/2 potentially nonzero eigenvalues of $P_{\mathcal{S}}C_{\mathcal{Q}}^{\Gamma}P_{\mathcal{S}}$). Let α_j be the maximal Schmidt coefficient of the eigenvector corresponding to λ_j . Then

$$\begin{split} &\mathcal{F}_{\mathcal{E}}^{min} \leq \lambda_1 - \max_{j} \{(\lambda_1 - \lambda_j)\alpha_j^2\} \quad \text{and} \\ &\mathcal{F}_{\mathcal{E}}^{min} \geq \max \big\{\lambda_{n(n+1)/2}, \lambda_1 - \sum_{j} (\lambda_1 - \lambda_j)\alpha_j^2\big\}. \end{split}$$

Also, $\|\cdot\|_{S(1)}$ can be computed when n=2 via semidefinite programming, which allows us to compute $\mathcal{F}_{\mathcal{Q}}^{min}$ for qubit channels.

The semidefinite program is as follows, where we optimize over states ho:

minimize:
$$\lambda_1 - \operatorname{Tr}((\lambda_1 P_{\mathcal{S}} - P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}})\rho)$$

subject to: $\rho \in (M_2 \otimes M_2)^+$
 $\rho^{\Gamma} \in (M_2 \otimes M_2)^+$
 $\operatorname{Tr}(\rho) = 1$

Also, $\|\cdot\|_{S(1)}$ can be computed when n=2 via semidefinite programming, which allows us to compute $\mathcal{F}_{\mathcal{Q}}^{min}$ for qubit channels.

The semidefinite program is as follows, where we optimize over states ρ :

minimize:
$$\lambda_1 - \operatorname{Tr}((\lambda_1 P_{\mathcal{S}} - P_{\mathcal{S}} C_{\mathcal{Q}}^{\Gamma} P_{\mathcal{S}}) \rho)$$
 subject to: $\rho \in (M_2 \otimes M_2)^+$ $\rho^{\Gamma} \in (M_2 \otimes M_2)^+$ $\operatorname{Tr}(\rho) = 1$

Further Reading

- E. Magesan, Depolarizing behavior of quantum channels in higher dimensions. arXiv:1002.3455 [quant-ph]
- N. J., D. W. Kribs, *Quantum gate fidelity in terms of Choi matrices*. arXiv:1102.0948 [quant-ph]