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Several problems in quantum information theory can be phrased in
terms of a family of operator norms that we will discuss today...

Determining whether or not an operator is an entanglement
witness (or a k-entanglement witness).

The NPPT bound entanglement problem.

The minimum gate fidelity of a quantum channel.
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Notation

H is an (n-dimensional) complex Hilbert space. The space of
linear operators on H is denoted by L(H) (or just L for short).

The Schmidt rank (a.k.a. tensor rank) of the bipartite pure
state |v〉 ∈ HA ⊗HB will be written SR(|v〉).

If SR(|v〉) = 1 (i.e., |v〉 = |a〉 ⊗ |b〉) then |v〉 is called
separable.

Recall that 1 ≤ SR(|v〉) ≤ n.
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Notation

Not all quantum states are pure – we will sometimes consider
mixed states, which are represented by density operators.

A density operator ρ ∈ L is a positive semidefinite operator
such that Tr(ρ) = 1.

By the spectral decomposition, we can always write mixed
states as a convex combination of projections onto pure states:

ρ =
∑
i

pi |vi 〉〈vi |.
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S(k)-Norms

Let X ∈ LA ⊗ LB and let 1 ≤ k ≤ n. Then we define the
S(k)-norm of X by∥∥X

∥∥
S(k)

:= sup
|v〉,|w〉

{∣∣〈w |X |v〉∣∣ : SR(|v〉),SR(|w〉) ≤ k
}
.

Yes, these are actually norms.

If k = n, then this is the standard operator norm. That is,∥∥X
∥∥
S(n)

=
∥∥X
∥∥.∥∥X

∥∥
S(1)
≤
∥∥X
∥∥
S(2)
≤ · · · ≤

∥∥X
∥∥
S(n−1)

≤
∥∥X
∥∥
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S(k)-Norms

Some more facts about the S(k)-norms...

∥∥X
∥∥
S(k)

:= sup
|v〉,|w〉

{∣∣〈w |X |v〉∣∣ : SR(|v〉),SR(|w〉) ≤ k
}
.

Easily-computable for rank-1 operators, but tough in general.

If X is positive semidefinite (the case we will be most
interested in), we can always choose |w〉 = |v〉 – not true in
general for normal (or even Hermitian) operators though.
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(Un)distillable States
Removing Mention of LOCC
Werner States
Relationship with the S(2)-Norm

(Un)distillable States

Suppose Alice and Bob share a state ρAB ∈ LA ⊗ LB , and they
want to extract a maximally entangled pure state from it.
However, they are only able to perform local quantum operations
and classical communication (LOCC).

That is, they want to use an LOCC operation Φ so that
Φ(ρ) = |e〉〈e|, where |e〉 = 1√

n

∑
i |i〉A ⊗ |i〉B .

If such an LOCC operation exists, ρAB is called distillable.

Otherwise, ρAB is called undistillable.
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(Un)distillable States

Now suppose Alice and Bob share multiple copies of ρAB . That is,
they share ρ⊗rAB ∈ L

⊗r
A ⊗ L

⊗r
B , and they want to extract a

maximally entangled pure state from it via LOCC operations.

If such an LOCC operation exists, ρAB is called r-distillable.

Otherwise, ρAB is called r-undistillable.

If ρAB is r -undistillable for all r ≥ 1, then ρAB is called bound
entangled.

Nathaniel Johnston Applications of a Family of Norms in Entanglement Theory



Introduction
The NPPT Bound Entanglement Problem

Minimum Gate Fidelity
Further Reading

(Un)distillable States
Removing Mention of LOCC
Werner States
Relationship with the S(2)-Norm

(Un)distillable States

Now suppose Alice and Bob share multiple copies of ρAB . That is,
they share ρ⊗rAB ∈ L

⊗r
A ⊗ L

⊗r
B , and they want to extract a

maximally entangled pure state from it via LOCC operations.

If such an LOCC operation exists, ρAB is called r-distillable.

Otherwise, ρAB is called r-undistillable.

If ρAB is r -undistillable for all r ≥ 1, then ρAB is called bound
entangled.

Nathaniel Johnston Applications of a Family of Norms in Entanglement Theory



Introduction
The NPPT Bound Entanglement Problem

Minimum Gate Fidelity
Further Reading

(Un)distillable States
Removing Mention of LOCC
Werner States
Relationship with the S(2)-Norm

(Un)distillable States

Now suppose Alice and Bob share multiple copies of ρAB . That is,
they share ρ⊗rAB ∈ L

⊗r
A ⊗ L

⊗r
B , and they want to extract a

maximally entangled pure state from it via LOCC operations.

If such an LOCC operation exists, ρAB is called r-distillable.

Otherwise, ρAB is called r-undistillable.

If ρAB is r -undistillable for all r ≥ 1, then ρAB is called bound
entangled.

Nathaniel Johnston Applications of a Family of Norms in Entanglement Theory



Introduction
The NPPT Bound Entanglement Problem

Minimum Gate Fidelity
Further Reading

(Un)distillable States
Removing Mention of LOCC
Werner States
Relationship with the S(2)-Norm

(Un)distillable States

Now suppose Alice and Bob share multiple copies of ρAB . That is,
they share ρ⊗rAB ∈ L

⊗r
A ⊗ L

⊗r
B , and they want to extract a

maximally entangled pure state from it via LOCC operations.

If such an LOCC operation exists, ρAB is called r-distillable.

Otherwise, ρAB is called r-undistillable.

If ρAB is r -undistillable for all r ≥ 1, then ρAB is called bound
entangled.

Nathaniel Johnston Applications of a Family of Norms in Entanglement Theory



Introduction
The NPPT Bound Entanglement Problem

Minimum Gate Fidelity
Further Reading

(Un)distillable States
Removing Mention of LOCC
Werner States
Relationship with the S(2)-Norm

(Un)distillable States

Some facts about (un)distillable states:

If ρAB is r -distillable, then it is (r + 1)-distillable.

If ρAB is separable, then it is bound entangled.

If ρAB has positive partial transpose (i.e., ρΓ
AB ≥ 0), then it is

bound entangled.
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(Un)distillable States

Do there exist bound entangled states with
non-positive partial transpose (NPPT)?

It is now over 10 years later and we still don’t know.
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Removing Mention of LOCC

Distillability and bound entanglement can be phrased (relatively)
simply in terms of the partial transpose and vectors with Schmidt
rank 2, removing the ugly need to discuss LOCC operations.

ρAB is undistillable if and only if

〈v |ρΓ
AB |v〉 ≥ 0 ∀ |v〉 ∈ HA ⊗HB with SR(|v〉) ≤ 2.

If ρΓ
AB 6≥ 0 (the case we are interested in), then this is

equivalent to saying that ρΓ
AB is a 2-entanglement witness –

it is positive on states with Schmidt rank no larger than 2, but
it is not positive on all states.
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Removing Mention of LOCC

Do there exist density operators ρAB such that ρΓ
AB is a

2-entanglement witness?

Yes.

ρAB is NPPT r -undistillable if and only if (ρ⊗rAB)Γ is a
2-entanglement witness.

ρAB is NPPT bound entangled if and only if (ρ⊗rAB)Γ is a
2-entanglement witness for all r ≥ 1.
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Werner States

For the NPPT bound entanglement problem, it has been shown
that it is enough to consider only Werner states.

Let S ∈ LA ⊗LB be the swap operator that maps |a〉 ⊗ |b〉 to
|b〉 ⊗ |a〉. Werner states are the density operators of the
following form:

ρα := I − αS ∈ LA ⊗ LB for some α ∈ [−1, 1].

Really, we should have a scaling factor of 1
n2−αn in front of the

Werner state so that Tr(ρα) = 1, but we will ignore it as it
does not affect bound entanglement.
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Werner States

It is not difficult to verify that ρΓ
α is a 2-entanglement witness if

and only if 1
n < α ≤ 1

2 .

The NPPT bound entanglement conjecture is then equivalent
to asking whether or not there exists 1

n < α ≤ 1
2 such that

(ρΓ
α)⊗r is a 2-entanglement witness for all r ≥ 1.

Numerical evidence suggests that ρα is indeed bound
entangled for all 1

n < α ≤ 1
2 .
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Relationship with the S(2)-Norm

Recall that for X ∈ (LA ⊗ LB)+, we have∥∥X
∥∥
S(2)

:= sup
|v〉

{
〈v |X |v〉 : SR(|v〉) ≤ 2

}
.

Proposition

Suppose X = X ∗ ∈ LA ⊗ LB has exactly one positive eigenvalue λ
and exactly one negative eigenvalue µ, and let P ∈ LA ⊗ LB
denote the projection onto the negative eigenspace of X . Then X
is 2-entanglement witness if and only if ‖P‖S(2) ≤ λ

λ−µ .
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Relationship with the S(2)-Norm

Let’s apply the proposition to Werner states! The partial transpose
of a Werner state has the form

ρΓ
α = I − αn|e〉〈e|,

where |e〉 = 1√
n

∑n
i=1 |i〉A ⊗ |i〉B is the “standard” pure maximally

entangled state.

When α = 2
n , the eigenvalues of ρΓ

α are simply 1 and −1.

Then for any r ≥ 1, the eigenvalues of (ρ⊗r2/n)Γ are also 1 and
−1.
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Relationship with the S(2)-Norm

It follows that bound entanglement of ρ2/n can be determined by
examining the S(2)-norm of the projections onto the negative
eigenspace of (ρ⊗r2/n)Γ.

Theorem

For n ≥ 4, the state ρ2/n is r -undistillable if and only if∥∥P(r)
∥∥
S(2)
≤ 1

2 , where P(r) is the orthogonal projection defined

recursively via

P(1) := |e〉〈e|AB ,

P(r+1) := P
(1)
AB ⊗ (I − P(r))A′B′ + (I − P(1))AB ⊗ P

(r)
A′B′ , for r ≥ 1.
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Relationship with the S(2)-Norm

Computing the S(2)-norm on these projections is tricky. What do
we know so far?∥∥P(r)

∥∥
S(1)

= 1
2 −

1
2

(
1− 2

n

)r
∥∥P(r)

∥∥
S(2)
≥ 1

2 −
(

1
2 −

1
n−2

)(
1− 2

n

)r
∥∥P(r)

∥∥
S(2)
≤ 2
∥∥P(r)

∥∥
S(1)

= 1−
(
1− 2

n

)r
That’s a big gap!
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Relationship with the S(2)-Norm

As a corollary of the fact that
∥∥P(r)

∥∥
S(2)
≤ 1−

(
1− 2

n

)r
, we

obtain the following partial result:

Corollary

If 1
n < α ≤ min

{
2
n ,

ln(2)
r+3 ln(2)−1

}
then ρα is NPPT r-undistillable.
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Minimum Gate Fidelity – Definition

The gate fidelity of a quantum channel (completely positive
trace-preserving map) E : L → L and a unitary channel
U(ρ) = UρU† is a function on pure states defined by

FE,U (|v〉) = Tr
(
E(|v〉〈v |)U(|v〉〈v |)

)
.

Without loss of generality, we can assume U = I and we will
simply write FE(|v〉).

The minimum gate fidelity is defined by

Fmin
E = min

|v〉
FE(|v〉).
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Minimum Gate Fidelity – Properties

Minimum gate fidelity satisfies many nice properties that make it a
good tool for measuring how close E is to the unitary channel U .

Unfortunately, minimum gate fidelity seems to be very difficult
to compute.

We will see that the minimum gate fidelity can be written in
terms of the S(1)-norm on a certain modification of the Choi
matrix of the channel.
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Choi Matrices

Before proceeding, we will need to briefly introduce the Choi
matrix of a quantum channel.

The Choi matrix of a quantum channel E is the operator

CE := n(idn ⊗ E)(|e〉〈e|).

Recall that E is completely positive if and only if CE is
positive semidefinite.
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The Symmetric Subspace

We will also need to consider the symmetric subspace:

The symmetric subspace S ⊆ HA ⊗HB is the span of vectors
of the form |v〉 ⊗ |v〉.

Equivalently, it is the set of vectors that are fixed under the
action of the swap operator S .

We will let PS denote the projection onto the symmetric
subspace S.
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Relationship with the S(1)-Norm

We are now ready to connect the minimum gate fidelity to the
S(1)-norm:

Theorem

Define λ := ‖PSC Γ
EPS‖. Then

Fmin
E = λ−

∥∥PS(λI − C Γ
E )PS

∥∥
S(1)

.
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Relationship with the S(1)-Norm

Now we can apply everything that we know about the S(1)-norm
to minimum gate fidelity.

In the case when n = 2, we can quickly compute the
S(1)-norm via semidefinite programming. Thus we can now
compute Fmin

E for qubit channels.

In general, we can upper bound the S(1)-norm via
semidefinite programming as well, which allows us to get
lower bounds for Fmin

E .
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Further Reading

N. J., D. W. Kribs, A Family of Norms With Applications In
Quantum Information Theory. arXiv:0909.3907 [quant-ph]

N. J., D. W. Kribs, A Family of Norms With Applications In
Quantum Information Theory II. arXiv:1006.0898 [quant-ph]

N. J., D. W. Kribs, Quantum Gate Fidelity in Terms of Choi
Matrices. arXiv:1102.0948 [quant-ph]
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