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Abstract. We give an operator algebraic formulation of the sta-
bilizer formalism for error correction in quantum computing. The
approach relies on an analysis of commutant structures, and gives
a natural extension of the classic stabilizer formalism to the gen-
eral case of arbitrary (not necessarily abelian) Pauli subgroups and
subsystem codes. We show how to identify the largest stabilizer
subsystem for every Pauli subgroup and discuss examples.

1. Introduction

The classic stabilizer formalism of Gottesman [1, 2] provides the
simplest technique to generate codes for the standard model of error
correction (QEC) in quantum computing [3, 4, 5, 6]. Recently the
formalism was extended by Poulin [7] to the case of subsystem codes
in “operator quantum error correction” (OQEC) [8, 9]. An important
subsystem refinement of Shor’s 9-qubit stabilizer code [3] was recently
discovered by Bacon [10], and also elucidated by Poulin [7]. The so-
called “Bacon-Shor code” has now been used by Aliferis-Cross [11]
to improve the crucial threshold theorem for fault-tolerant quantum
computation.

The mathematical starting point for the classic stabilizer formalism
is an abelian subgroup of the n-qubit Pauli group. There are a num-
ber of näıve and natural questions that can be asked, such as: Does
there exist an extension of the stabilizer formalism that begins with an
arbitrary (not necessarily abelian) subgroup of the Pauli group? If so,
how does it relate to Poulin’s extension? Moreover, is there an oper-
ator algebraic formulation of the stabilizer formalism? In this paper
we present a natural subsystem extension of the stabilizer formalism
that starts with an arbitrary Pauli subgroup. The operator algebraic
approach we take may be viewed as complementary to Poulin’s, in that
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the same subsystem codes are obtained from a different perspective. In
particular, we argue that this affirms the subsystem generalization of
[7] is indeed the “right” generalization of the stabilizer formalism to
arbitrary Pauli subgroups. Intuitively, the approach allows the “gauge
freedom” of stabilizer subsystem codes to be injected at an earlier stage
in the process. Formally, stabilizer subsystems are obtained via the op-
erator commutant structure of Pauli subgroups.

The operator algebra approach has the advantage that it yields a
simple way to generate stabilizer subsystem codes. However, it has
the drawback that more complicated Pauli groups must be considered
throughout the analysis in contrast to the original formulation. Nev-
ertheless, we derive a conceptual technique to identify the largest sta-
bilizer subsystem of a Pauli subgroup in terms of the structure of its
largest abelian subgroup. We also discuss examples.

Our goals in presenting this article are two-fold: We feel that the
quantum computing community will benefit from having this comple-
mentary perspective on the stabilizer formalism. Moreover, we believe
the perspective is an inviting one for mathematicians, and in particu-
lar for those in operator algebras and representation theory. For these
reasons the article has been written with an introductory flavour.

2. Error Correction and Operator Algebras

Noise in the context of quantum computing is modelled by com-
pletely positive trace-preserving maps (i.e., quantum operations), and
in QEC error-correcting codes take the form of subspaces [12]. Quan-
tum codes form linearly closed sets since, in contrast to classical com-
puting, linear combinations of code words are physically viable (corre-
sponding to superpositions of classical states). For experimental rea-
sons we primarily focus on finite-dimensional Hilbert space H = HV ,
representing a quantum system V with finitely many degrees of free-
dom. Thus a noise model E : B(H) → B(H) is determined by a
set of error operators {Ea} on H such that E(σ) =

∑
a EaσE†

a for all
σ ∈ B(H). As a convenience we write E = {Ea}.

More generally, quantum information can be encoded into subsys-
tems of H. A quantum system B represented on a Hilbert space HB

is a subsystem of H if there is another quantum system A such that
H = (HA ⊗ HB) ⊕ (HA ⊗ HB)⊥. We shall regard HB as containing
the encoded states for transmission, and HA as the associated ancilla.



STABILIZER FORMALISM FOR QUANTUM ERROR CORRECTION 3

Thus, B is called a “subsystem code”. Observe that the case of sub-
space codes is captured when dim A = 1. We are of course only inter-
ested in cases for which dim B ≥ 2, as HB encodes log(dim B) logical
qubits in general.

Definition 2.1. A subsystem code B is correctable for a noise map E
if there is a quantum operation R : B(H) → B(H) such that ∀σA ∈
B(HA), ∀σB ∈ B(HB), ∃τA ∈ B(HA) :

(1)
(R ◦ E)

(σA ⊗ σB) = τA ⊗ σB.

This is the definition from [8, 9] of an OQEC error-correcting subsys-
tem. A correctable subspace code in QEC is captured when dim A = 1.
It is important to note that an operationR which corrects B for a noise
map E = {Ea}, also corrects B for all noise models whose error opera-
tors are linear combinations of the Ea.

If B is a correctable subsystem for E , then observe that the C∗-
algebra AB = IA ⊗ B(HB) is perfectly correctable for E . Indeed, if
Eq. (1) is satisfied, then there is a τA (which only depends on IA and E)
such that (R◦E)(IA⊗σB) = τA⊗σB for all σB ∈ B(HB). We can define
an operation R′ that simply fixes σB and depolarizes the A subsystem,
in particular mapping τA to IA. Then we have ((R′◦R)◦E)(σ) = σ for
all σ ∈ AB. Hence, correctability of a subsystem B implies the algebra
AB is perfectly correctable. In fact, as proved in [9], the converse is
true.

Proposition 2.2. A subsystem B is correctable for E if and only if the
algebra AB is perfectly correctable for E.

Thus, the basic framework for quantum error correction can be for-
mulated in operator algebraic language. The operator algebra perspec-
tive has recently been used in [13] as part of a generalization of the
entire framework to arbitrary finite-dimensional C∗-algebras and the
correction of hybrid classical and quantum information.

The following result from [8, 9, 14] gives testable conditions for
correction of a subsystem in terms of the error operators. Here we
have added the operator algebraic condition (iii).

Theorem 2.3. The following conditions are equivalent for a subsystem
B and noise map E = {Ea}:

(i) B is correctable for E.



4 N. JOHNSTON, D.W. KRIBS, C.-W. TENG

(ii) Let PAB = IA ⊗ IB. For all a, b, there is an operator Fab ∈
B(HA) such that

(2) PAB E†
bEa PAB = Fab ⊗ IB.

(iii) For all a, b, the operator PABE†
bEaPAB belongs to the com-

pressed commutant PAB(IA ⊗ B(HB))′PAB.

3. Stabilizer Formalism For Pauli Subgroups

We begin with a brief description of the framework for the classic
(subspace) stabilizer formalism, emphasizing an operator commutant
perspective, and then segue into the subsystem generalization.

Given a positive integer n ≥ 1, consider n-qubit Hilbert space H =
C2n

= (C2)⊗n. A fixed basis {|0〉, |1〉} for C2 yields a “computational
basis” for H with elements |i1i2 · · · in〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 such
that ij = 0 or 1. The unitary Pauli operators on C2 have matrix
representations in the basis {|0〉, |1〉} given by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.(3)

Let I2 be the identity operator on C2. Any operator X on C2 defines
operators onH denoted by X1, . . . , Xn, where X1 = X⊗I2⊗. . .⊗I2, etc.
For simplicity we shall sometimes write XI · · · I for such an operator.
The n-qubit Pauli group Pn is the subgroup of the unitary group on
H generated by Xj, Yj, Zj, j = 1, . . . , n, and the scalar matrix iI,
and it plays a central role in quantum computing. In the context of
quantum error correction operators inside Pn are interpreted as errors.
For instance, X corresponds to the natural extension of the classical bit
flip error to the quantum case. See [17] for a more complete discussion.

Let S be an abelian subgroup of the Pauli group Pn for which there
exists a common multidimensional eigenspace VS. Because of the sym-
metries involved, without loss of generality we may assume that VS

is an eigenvalue-1 eigenspace for elements of S; that is, M |ψ〉 = |ψ〉
∀M ∈ S, ∀|ψ〉 ∈ VS. In quantum computing, such subspaces are of-
ten called “decoherence-free subspaces” [12]. As elements of Pn either
commute or anti-commute, it follows that −I /∈ S, and so as a conve-
nience we assume S is generated by Z1, . . . , Zk for some k ≥ 1. The
subspace VS is a quantum code that encodes logVS logical qubits. The
code is correctable, in the sense of QEC, for errors belonging to either
S or the complement of the centralizer of S inside Pn [2, 17].
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The focus on abelian subgroups of Pn in the context of the QEC case
is, in retrospect, no accident. Such subgroups typically do have joint
eigenspaces. In fact, if S is generated by n− k independent elements,
say Z1, . . . , Zn−k for instance, then VS is 2k-dimensional and encodes k
logical qubits. Indeed, it is spanned by the vectors {|0〉⊗n−k|i1 · · · ik〉 :
ij = 0, 1}. On the other hand, this is not the case for non-abelian
subgroups of Pn. In particular, any Pauli group that contains two
elements which anti-commute also contains −I, and thus has no joint
eigenvalue-1 space. In fact, a non-abelian Pauli group has no non-trivial
joint eigenspaces.

An attempt to extend the stabilizer formalism to the case of arbitrary
(not necessarily abelian) Pauli groups naturally leads one to subsystem
codes. The first step is to recognize how the subspace case arises from
a different perspective. The commutant S ′ of a set of operators S is
defined as the set of operators that commute with each element of S.
In the case of a Pauli group, this set forms a C∗-algebra that induces
a decomposition of H as H = ⊕k(HAk ⊗HBk) such that with respect
to this decomposition the operators of S ′ take the form

S ′ =
⊕

k

(
IAk ⊗ B(HBk)

)
,(4)

and hence elements of S belong to

(5) S ⊆ S
′′

= Alg{S} =
⊕

k

(B(HAk)⊗ IBk
)
.

We shall writeMm⊗In for B(HA)⊗IB, where dim A = m and dim B =
n, when an orthonormal basis for HA ⊗ HB has been identified that
yields this matrix form. The commutant of a set of operators may be
computed directly, and there is computational software available for
this purpose.

Now consider an abelian subgroup S of Pn as above, with joint sta-
bilizer space VS. As M = M † ∀M ∈ S, we have M |ψ〉 = |ψ〉 = M †|ψ〉
∀|ψ〉 ∈ VS. Thus,

M |ψ〉〈φ| = |ψ〉〈φ| = |ψ〉(M †|φ〉)† = |ψ〉〈φ|M.(6)

It follows that the algebra B(VS) is contained in S ′. Hence, stabi-
lizer subspace codes for S can be obtained through an analysis of the
commutant S ′. Moreover, the Spectral Theorem and its associated
functional calculus can be applied jointly to the elements of S to show
that the commutant structure of S ′ is entirely determined by such sub-
spaces; that is, dim Ak = 1 for all k in Eq. (4). In particular, there is
no genuine subsystem structure induced on the system Hilbert space
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H from this commutant, there is only a subspace splitting of H. This
scenario is exclusive to the case of abelian subgroups.

On the other hand, consider a non-abelian subgroup S of Pn. In this
case the commutant S ′ still has the general form given in Eq. (4), but
now there will be k such that dim Ak > 1, and thus we have bona fide
subsystems. The discussion below motivates the following definition.

Definition 3.1. Given a Pauli subgroup S, we say the subsystems Bk

in Eq. (4) are stabilizer subsystems for S.

Let g be an element of S. Then Eq. (5) gives us operators gAk ∈
B(HAk) such that g = ⊕kg

Ak ⊗ IBk . For the moment fix k and put
Ak = A, Bk = B. If we take an arbitrary σA and σB, then

(7) g(σA ⊗ σB) = gAσA ⊗ σB and (σA ⊗ σB)g = σAgA ⊗ σB.

In this sense, the subsystem B is stabilized by the action of G. From
another perspective, such subsystems are called “noiseless subsystems”
[12] for the elements of G.

In fact, if ga, gb belong to S (and recalling that PAB = IA ⊗ IB) we
see that

(8) PABg†agbPAB = (gA
a )†(gb)⊗ IB.

Thus the following result is an immediate consequence of Theorem 2.3.

Proposition 3.2. Let B be a stabilizer subsystem for a Pauli group
S. Let E = {Ea} be a quantum operation such that each Ea is a linear
combination of elements from S. Then B is a correctable subsystem
for E.

Remark 3.3. There is an important aspect of stabilizer subsystems
that does not arise for stabilizer subspaces. In general, if B is a cor-
rectable subsystem for E , then it is easy to see that for all states
|α〉 ∈ A, the subspace code |α〉 ⊗B is also correctable for E . However,
if S is non-abelian and B is a subsystem (but not subspace) stabilizer
code for S, then no subspace of the form |α〉 ⊗ B can be a stabilizer
subspace for S (even though each such subspace is still correctable for
error models from S). Indeed, as noted above non-abelian S do not
have stabilizer subspaces. From another perspective in quantum error
correction, this is a consequence of the fact that if B is a noiseless sub-
system for an error model E , then any subspace of the form |α〉⊗B will
be correctable for E , but typically it will not be a decoherence-free sub-
space (and hence requires a non-trivial correction operation). It should
be noted, however, that there are many cases in which the existence of
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a subsystem code implies the existence of a classic stabilizer code with
comparable features [16].

We conclude this section with an illustrative two-qubit example.

Example 3.4. If S = < ZI > = {ZI, II}, then S ′ = M2 ⊕M2 and
the associated decomposition of two-qubit space is C4 = B1⊕B2 where
B1 = span{|00〉, |01〉} and B2 = span{|10〉, |11〉}. The subspace B1

(and its symmetric counterpart B2) is the simplest example of a stabi-
lizer subspace code.

Consider now the non-abelian Pauli subgroup

S = <ZI,XX > = {±ZI,±XX,±I,±iY X}.
One can check by direct calculation that with respect to the standard
ordered basis {|00〉, |01〉, |10〉, |11〉}, we have

S ′ =
{(

a b
c d 0
0 d c

b a

)
: a, b, c, d ∈ C2

}
∼= I2 ⊗M2.(9)

The controlled-NOT operator U = I2 ⊕ X is a unitary that induces
the unitary equivalence S ′ ∼= I2 ⊗M2. Thus a single-qubit stabilizer
subsystem for S is identified with the second sector of the new tensor
structure C4 = A ⊗ B = span{|i′1i′2〉} given by |0′0′〉 ≡ |00〉, |0′1′〉 ≡
|01〉, |1′0′〉 ≡ |11〉, |1′1′〉 ≡ |10〉.
Remark 3.5. The stabilizer formalism for OQEC as introduced by
Poulin in [7] is arrived at from a perspective different from that pre-
sented here. In particular, abelian Pauli groups associated with known
stabilizer codes are considered first, then subsystem structure is dis-
cerned within the code. Nevertheless, the stabilizer subsystem codes
that can be found through the above approach coincide with the codes
discovered through the approach of [7]. This is one consequence of
Theorem 4.1 below; namely, stabilizer subsystems for arbitrary Pauli
groups still depend in an explicit way on the structure of maximal
abelian subgroups.

4. Largest Stabilizer Subsystem for a Pauli Subgroup

The discussion of the previous section shows that the problem of
identifying stabilizer subsystems for Pauli groups is equivalent to ex-
plicitly computing commutant structures for such groups. There is of
course computer software that can be used for this purpose. However,
a conceptual technique for determining this structure in terms of the
group’s properties, and in particular the largest subsystem available
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for encoding, is highly desirable. In this section we derive such a re-
sult. Some thought reveals Theorem 4.1 to be quite intuitive, though
explicitly proving it is somewhat delicate.

A key result in the classic case is that the commutant of an abelian
Pauli group, with k elements in a minimal generating set, includes a
maximal stabilizer subspace of dimension 2k. The following may be
regarded as a generalization of this result to the case of arbitrary Pauli
groups. Note that every non-abelian group G contains the elements ±I
(in fact this property determines non-abelianality for Pauli groups). As
the phase factors I = {±I,±iI} do not effect commutant structure, to
streamline the presentation we shall assume G contains I.

Theorem 4.1. Let G = G ∪ I be a subgroup of Pn. Let S0 = I ∪
{g1, . . . , gm} be a minimal generating set for a maximal abelian sub-
group S of G. Then the commutant G′ contains a subalgebra isomor-
phic to Mr, where r = 2n−m, and this is the largest matrix algebra that
can be imbedded into G′. In other words, there is a stabilizer subsystem
for G that encodes n−m logical qubits, and this is optimal.

To prove the theorem we shall derive a number of ancillary results on
Pauli subgroups. As noted above, the abelian special case of this result
is a central starting point for the classic stabilizer formalism. Here we
state it in operator algebraic language.

Lemma 4.2. Let S be generated by {Z1, . . . , Zm} for some 1 ≤ m ≤ n.
Then the commutant S ′ is unitarily equivalent to the algebra direct sum

S ′ ∼= M(2m)
r , where r = 2n−m.

Proof. The operators
I±Zj

2
project onto the ±1 eigenspaces for Zj. It

follows that the projections Px =
∏m

j=1
I+(−1)xj Zj

2
, for x = (x1, . . . , xm) ∈

Zm
2 , are mutually orthogonal, sum to the identity, and are the same

rank (which is necessarily 2n−m). They also span the algebra Alg(S)
generated by S. Hence the stated form for S ′ is evident. ¥

The next result quantifies the size of minimal generating sets for
Pauli groups. It relies on a straightforward combinatorial argument
based on properties of the Pauli group.

Lemma 4.3. Let G be a subgroup of Pn. Then |G| = 2k+2 if and only
if G is minimally generated by a set G0 ⊇ I such that |G0 \ I| = k.

Proof. Sufficiency follows readily from the fact that the 4 ·2k elements
obtained from products of elements from G0 are distinct. To see neces-
sity, one can proceed inductively by first letting G1 be a subgroup of Pn



STABILIZER FORMALISM FOR QUANTUM ERROR CORRECTION 9

with |G1| = 2r+2, such that G1 is minimally generated by r non-phase
factor elements of Pn. Then let G2 be a subgroup of Pn that contains
G1 such that |G2| = 2r+3. Clearly there must be at least r + 1 genera-
tors for G2, but simply by choosing an element belonging to G2 \ G1,
one can check that a generating set for G2 is obtained consisting of this
element and the generators for G1. ¥

Given a group G and an element g ∈ G, we denote the centralizer of
g inside G by C(g) = {h ∈ G : [h, g] = 0}. Of course, the centralizer
of any element inside an abelian group is equal to the entire group,
whereas the same is not true inside non-abelian groups.

Lemma 4.4. Let G be a non-abelian subgroup of Pn such that |G| =
2k+2. Let g be an element of G that anti-commutes with some element
of G. Then |C(g)| = 2k+1.

Proof. First assume that |C(g)| < 2k+1. Then there exist 2k+1 + 1
elements gi ∈ G that anti-commute with g. In particular, observe that
g commutes with all products gigj. For a fixed i the elements gigj

are distinct, and hence there are at least 2k+1 + 1 distinct elements
gigj. Thus, g commutes with at least 2k+1 + 1 elements of G, which
yields a contradiction since |G| = 2k+2 by hypothesis. It follows that
|C(g)| ≥ 2k+1.

Since C(g) is a subgroup of G and |G| = 2k+2, if |C(g)| > 2k+1, then
necessarily we would have C(g) = G. But this would be a contradiction
as g anti-commutes with at least one element of G by hypothesis. The
result follows. ¥

The following result gives information on the size of abelian sub-
groups of Pauli groups.

Lemma 4.5. Let G be a subgroup of Pn such that |G| = 2k+2. Then
there exists an abelian subgroup S of G such that |S| ≥ 2(k/2)+2.

Proof. The result is immediate if G is abelian, so assume this is not
the case.

We may construct the group S inductively as follows. Set r = 1
and Gr = G. Let g be an element of Gr that does not commute with
all of Gr. Then |C(g)| = 2k−r+2 by Lemma 4.4. If C(g) is abelian,
set S = C(g) and stop. If C(g) is not abelian, set r = r + 1 and set
Gr = C(g). Repeat this process until C(g) is abelian. As G is a finite
group the process will eventually terminate.
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It remains to show that the above procedure terminates with r ≤
k/2. (Note that if k = 1, the group G was abelian to begin with, so we
make the convention in such a situation that r = 0.) To see why this
is the case, we consider the above procedure in terms of the generators
of Gr. Let Sr = I ∪ {g1, . . . , gk−r} be a minimal set of generators for
Gr, given by Lemma 4.3. When Lemma 4.4 is applied to Gr, we see
that Gr+1 is a subgroup of Gr such that |Gr+1| = 1

2
|Gr|. Hence Gr+1

has a minimal generating set with exactly one less generator than Gr

by Lemma 4.3. But note that the element used in this application of
Lemma 4.4 for Gr could be a generator of Gr+1, as can any generator gj

of Gr that commuted with all of Gr. Thus, Gr+1 has one less generator
than Gr, but one more generator that commutes with the whole group.

Therefore, the generating set of Gr will be abelian after no more than
k/2 iterations of this process, since each iteration results in a group
that is generated by a set with two fewer elements that anti-commute
with some element of the group. (If k is odd, we make use of the fact
that any group generated by a single element will be abelian.) Thus,
following the above process we can construct an abelian subgroup S of
G with the desired property. ¥

Finally, we shall make use of the following structural result on the
size of intersected Pauli groups.

Lemma 4.6. Let G and H be subgroups of Pn such that |G| = 2a and
|H| = 2b. Then |G ∩H| ≥ 2a+b−2n−2.

Proof. We shall proceed by fixing G and inducting downwards on b.
The base case b = 2n + 2 trivially follows since H is equal to Pn.

Now assume the result holds for b = r. As in Lemma 4.3, we can
add elements to a generating set of G ∩ H to obtain a generating set
of either G or H. Suppose |G ∩ H| = 2p, so Lemma 4.3 implies that
a minimal generating set F0 for G ∩ H has at least p − 2 elements in
addition to I. By Lemma 4.3, G and H have minimal generating sets
of a− 2 and r − 2 elements respectively, again excluding I. Thus, we
can find elements gi and hj such that the sets G0 = F0 ∪{g1, . . . , ga−p}
and H0 = F0 ∪ {h1, . . . , hr−p} generate G and H.

If we remove one generator of H and call the new group generated
H1, there are two cases to consider. If we were to remove one of the hj,
the size of H would be reduced by a factor of 2 by Lemma 4.3. Note,
however, that the size of G∩H would be unaffected. If instead we were
to remove one of the non-I elements of F0, again by Lemma 4.3 the
size of both H and G ∩ H would be reduced by a factor of 2. Either
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way, since p ≥ a + r− 2n− 2 from the induction hypothesis, it follows
that |G∩H1| ≥ 2a+r−2n−3. This completes the proof since |H1| = 2r−1.

¥

Proof of Theorem 4.1. By Lemma 4.5 we have |S| ≥ 2(k/2)+2, which by
Lemma 4.3 implies that m ≥ k − m. As in Lemma 4.3, there exists
P1, . . . , Pk−m ∈ Pn such that G0 = S0 ∪ {P1, . . . , Pk−m} is a minimal
generating set for G. We may now find a unitary U in the “Clifford
group” (which is the normalizer group of Pn inside the group of all
unitaries on n qubits) such that each UgjU

† = Zj and each UPiU
†

belongs to Pn. Hence, without loss of generality we shall assume each
gj = Zj. Thus, it follows that the commutant G′ is given by

(10) G′ = {Z1, . . . , Zm}′
⋂

∩k−m
j=1 Alg(C(Pj)),

where C(Pj) is the centralizer of Pj inside Pn.

By Lemma 4.2, the algebra G′ is a subalgebra of M(2m)
r , where

r = 2n−m. Hence the largest full matrix algebra that can possibly
be imbedded inside G′ is Mr. We complete the proof by showing that
there is indeed such an imbedding.

The case of an abelian group G is covered by Lemma 4.2, so assume
G is non-abelian, and in particular that k > m. By Lemma 4.4 we have
|C(Pj)| = 22n+1 for each j. Let H0 = I ∪ {Z1, . . . , Zn, Xm+1, . . . , Xn}
and let H be the group generated by H0. Then

(11) Alg(H0) = {Z1, . . . , Zm}′ ∼= M(2m)
r .

Thus, we have

G′ = Alg(H0)
⋂

∩k−m
j=1 Alg(C(Pj))

= Alg
(
W

⋂
∩k−m

j=1 C(Pj)
)

But Lemma 4.6 shows that the intersection H ∩C(Pj) is a subgroup
of Pn of size at least 2(2n−m+2)+(2n+1)−2n−2 = 22n−m+1. Similarly, by
repeatedly applying the lemma we see that H∩C(P1)∩. . .∩C(Pk−m) is a
subgroup of Pn of size at least 22n−k+2. By Lemma 4.4 and Lemma 4.3,
for each i there is exactly one Zj, 1 ≤ j ≤ m, such that Zj does not
belong to C(Pi). Thus, at each stage of intersecting H with subsequent
C(Pi) we can choose to remove a Zj, 1 ≤ j ≤ m, from H0 (if a generator
needs to be removed to preserve a minimal set) and leave the rest of the
generating set the same. This, combined with the fact that k−m ≤ m,
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shows that

(12) G′ ⊇ Alg{Zm+1, . . . , Zn, Xm+1, . . . , Xn}.
This subalgebra is easily seen to be unitarily equivalent to the algebra
Is ⊗Mr, where r = 2n−m and s = 2m, and the result follows. ¥

Example 4.7. The non-abelian Pauli group G = <ZI, XX > of Ex-
ample 3.4 provides the simplest example of a bona fide stabilizer sub-
system. A maximal abelian subgroup of G is given by S = < ZI > ,
and here we have m = 1, n = 2. Thus we are told by Theorem 4.1 that
G has a single qubit stabilizer subsystem and that this is optimal, or,
equivalently, the algebra M2 is the largest full matrix algebra that can
be imbedded into the commutant G′. Indeed, this is the case, as the
earlier calculation showed that G′ ∼= I2 ⊗M2.

Example 4.8. We conclude by showing how Bacon’s important sub-
system refinement [10] of Shor’s 9-qubit code [3] can be seen from
the commutant perspective. We adopt Poulin’s characterization of the
code from [7].

The Bacon-Shor code defines a single qubit subsystem of 9-qubit
Hilbert space with a 4-qubit ancilla. In our earlier notation, B is
2-dimensional, A is 24-dimensional, and together A ⊗ B defines a 25-
dimensional subspace of 29-dimensional Hilbert space. The algebra
IA ⊗ B(HB) ∼= I24 ⊗M2 corresponds to a simple subalgebra of the
commutant G′ of the Pauli group with the twelve generators given in
the following table:

g1 X X X X X X I I I
g2 X X X I I I X X X
g3 Z Z I Z Z I Z Z I
g4 I Z Z I Z Z I Z Z

g5 I Z Z I I I I I I
g6 I I I I Z Z I I I
g7 Z Z I I I I I I I
g8 I I I Z Z I I I I

g9 I I X I I I I I X
g10 I I I I I X I I X
g11 X I I I I I X I I
g12 I I I X I I X I I

We can easily see from Theorem 4.1 that the commutant G′ encodes a
qubit stabilizer subsystem. Indeed, by inspection we observe that the
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elements {g1, g2, g3, g4, g5, g6, g7, g8} generate a maximal abelian sub-
group of G. Thus, here we have n = 9 and m = 8, and Theorem 4.1
shows that M2 can be imbedded into G′.

See [10, 7, 11] for details on the remarkable error-correcting proper-
ties of this code. Also see [15, 16] for a detailed analysis of subsystem
codes from a coding theory perspective.
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